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AN INTEGRAL EQUATION FORMULATION OF PLATE BENDING
PROBLEMS

by
M. A. Jaswon* and M. Maiti¥*

SUMMARY

The mathematical theory of thin elastic plates loaded by transverse forces leads to biharmonic boundary
value problems., These may be forinulated in terms of singular integral equations, which can be solved
numerically to a tolerable accuracy for any shape of boundary by digital computer programs. Particular
attention is devoted to clamped and simply -supported rectangular plates, Our results indicate support for the
generally accepted treatment of such plates and for the intuitive picture of deflection behaviour at a corner,

1. Introduction

It has been demonstrated in a recent paper [1] that some biharmonic
boundary-value problems related to two-dimensional elastostatics may be
solved numerically by an adaption of Jaswon's integral equation formulation
[2]. We demonstrate in the present paper that this adaption also works
well for certain biharmonic problems related to the theory of thin plates
loaded by transverse forces. The relevant field quantity in plate theory
is the transverse deflection w, analogous mathematically to Airy's stress
function y, and second derivatives of w yield moment components just as
second derivatives of y yield stress components. An attractive feature of
plate theory is that w has an immediate physical significance, and of course
it can be computed to a higher accuracy than moment or stress components.
However plate theory offers some special difficulties which do not arise
in elastostatics. First, it is necessary to compute moments at the bound-
ary it they have not been prescribed thereon, and this requires the dif-
ferentiation of simple layer potentials at a source point on the boundary.
Secondly, in the case of polygonal boundaries, complications appear at
corners owing to their infinite curvatures. Finally, as regards free bound-
aries, higher derivative conditions enter which are not well adapted either
to theoretical or numerical analysis. These difficulties make an independent
treatment of plate problems necessary.

Three distinct problems are considered in this paper: clamped rectangular
plates of various dimensions subject to transverse loading; the simply-
supported square plate subject to uniform transverse loading; the partly
clamped, partly simply-supported square plate subject to uniform transverse
loading. All our results are in excellent agreement with the approximate
analytic solutions quoted by Timoshenko and Woinowsky-Krieger [3]. Our
results for clamped rectangular plates also agree well with those recently
obtained by Morley [4] on the basis of variational principles.

As regards simply-supported rectangular plates subject to uniform trans-
verse loading, the problem may in effect be reduced from biharmonic to
harmonic function theory by omitting the boundary term p-! —a_‘r)ll (p! is the
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curvature and -(,f—n denotes normal derivative), an extensively employed step

apparently first pointed out in the literature by Marcus [5]. This term is
indeed zero along a straight line since p-1 = 0, but could possibly become
finite or even infinite at a corner owing to the behaviour of p°! there.
No systematic analytical or numerical investigation of p-1 g—:lv omission
effects seems to be available., Our procedure here is to round off each
corner by a circular arc of radius p, as described elsewhere [1], solve

the complete biharmonic problem numerically retaining p - g% along the

arcs, and examine numerical behaviour as p, - 0. We find the results
for a square plate to be almost indistinguishable from those obtained by

solving the reduced problem numerically. We also find that po'1 %\r}—lv in-
creases,whilstg—:lV decreases, as p;l— 0, so implying (as will be explained
later) support for Timoshenko's intuitive picture [3] of deflection behaviour
near a corner [6]. A similar, though simpler, reduction occurs on o-
mitting pt —g—g from the boundary conditions of a simply-supported plate
subject to a uniform thermal moment [7]. This problem has been treated
on the same lines as the preceding, yielding similar conclusions. Further
problems now under investigation are the partly clamped, partly free rec-
tangle, and the clamped ellipse subject to a concentrated transverse load.

Three main conclusions emerge from this paper. First, the integral
equation method rapidly provides a reliable overall picture of the deflection
and moment distribution, though finer details are probably best supplied
by more sophisticated analytical techniques such as the polar coordinate
transformations of Morley [ 8] or of Williams [9], or the A-method of
Quinlan [ 107]. Secondly, its numerical results lend support to the widely
accepted omission of p! %:1! for rectangular plates, -so enabling the ana-
lytical treatments to be correspondingly simplified. Thirdly, it appears
that the corners of a simply-supported square plate behave theoretically
as- expected on intuitive physical grounds.

The rest of the paper divides into three main sections: thin plate theory,
integral equation formulation, numerical results and comparisons.

2. Thin Plate Theory

The transverse deflection of a thin plate under a uniform load k per
unit area satisfies the equation

v’ =viw = x/D, (1)

where D 1is the flexural rigidity. With w known, the moment components
at any point x, y are determined from

2 2 2 2
= 9% 3y ’ 9y 9%
o B _ 92w
M, = - M, =D (1) gt (2)

using the notations and conventions of Timoshenko [3]. These formulae
can immediately be adapted to the boundary, L, by identifying x = n, y = t,
where n, t denote the (inward) normal and tangential boundary variables
as indicated in Fig. 1. Accordingly we write
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Fig.1, Orientation of tangent and normal at a point p of the boundary curve L enclosing the domain Q.

2 2 2 2
Mrm = - D a_ﬂ + v _a__lv , Mt[ = - D a_V_V + v a_W s
on? at? at 2 9n?
M = - D(1-v) 22 3
ot anat ’ (3)

noting that M does not enter into any boundary conditions since it refers
entirely to the material just inside L. Although the t-direction lies at right
angles to the n-direction, it proves more convenient to work with the arc
variable s rather than with t, necessitating the derivative transformations

2
92w _ 9w %2w _ 9w 1 aw ) (4)

9nds = 9ndt > 3dson anas p os

For a straight line p-! = 0 and s has then exactly the same significance
as t. Substituting from (4) into (3) yields the general boundary formulae

2 2
Mmz_DMer.a.__W-lQ!,
on? 9s? p on
92 92 19 ®)
= - -y WL L - w L ow
M, D(1-v) onos D(1-v) l:asan * p as:]'

The conditions w = 0 holds for both clamped and simply supported bound-
aries. This implies

w _ 2W . g on L, (6)
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so that (5) becomes

- 9%°wW v 9w | _ 2 l-v ow
My, = D[a '55‘5]- 'D[VV”Ta—n ;
_9n?
9%w 9 [ow "
R = RO ¢
where
2 2 2 2
vzsz-*-é_w:?,___w-}-aw—l._g_W.
on®  8t?  en?  as? P "
On a clamped boundary g%v- = 0, so that (7) becomes
- 2 - 9 fow\ _
M, =-DV'w, My =-D(1l-y) Bs (5-5) = 0. (8)
On a simply-supported boundary My, = 0, but no simplifications appear in
(7). To summarize, the prescribed conditions on a clamped boundary are
. Ow
w = 31'—1_ = 0: (9)

with M,, to be determined from (8); the prescribed conditions on a simply-
supported boundary are

. Yy 4+ 1Y W
w = Viw o+ S22 5= 0, (10)
with M, to be determined by (7). 9 oW
Condition (10) simplifies to w = V®w = 0 on omitting o™t Y along a

polygonal boundary. Accordingly, writing Vi = M, we see from (1) that
viM = k/D throughout the plate domain A coupled with M = 0 on L. This
is a classical Dirichlet problem for M. With M known in A, we may de-
termine w by solving the second Dirichlet problem: V2w = M in A subject
tow = 0 on L. For the simply- supported %)olygonal plate subject to a uni-

form thermal moment, w satisfies V2 = 0 in A under the boundary
conditions
w =0 V?w =K (11)

where K is a constant. Since V2w is now a harmonic function in A, and
since V2w = K on L, it follows that V2w = K throughout A. Coupling this
equation with w = 0 on L defines a Dirichlet problem for w, Exact solu-
tions of these relatively simple Dirichlet problems do not seem to be a-
vailable for rectangular domains, but reliable approximate solutions can
be readily obtained by an integral equation method [12].

3. Integral Equation Fovmulation

Equation (1) admits the particular integral

k
W = 48D (x* + y%), (12)

and its general solution can hence be written

w =W+ W, (13)
where W satisfieg Viw =
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Throughout any compact domain A we may adopt the representation*

W = r2¢ + ¢; V24 = VY = 0 (14)

where r? = x? + y?, or equivalent representations such as x¢ + ¢ or
y$ + &. Since W is prescribed on L, i.e. W = -W; so making w = 0 in

accordance with (9) and (10), equation (14) may be regarded as a linear

functional relation coupling ¢, ¢ on L. Also, since W'(= g%zy), or VW, or

V2W + v W', is prescribed on L, there exists a second linear functional
relation
W' = (I‘ZQS)' + ‘l" - 2rr|¢ +-1"2¢' + ‘l" (15)
or
2err _ a¢ a9
VW-4(X5}Z+Y—5§+¢): (18)
or
2 1__1/ I = _?_Sé Qé + u 2 ' + 2 4y + i (7]
VW+pW 4(xax+yay+¢) p(rrqﬂ reé /2] (17)

coupling the derivatives of ¢, ¢ on L. Relation (14), together with (15),
(16) or (17), in principle suffices to determine @, ¢ on L, whence they
can be continued into A, so continuing W into A, and thereby continuing
w into A, A practicable method of carrying out this program is to identify
@, ¥ as potentials generated by continuous simple source distributions on
1., with densities to be determined. Thus we write

#P) = [ 1og |P-q | at@aq (18)

where q is a vector variable defining source points on L, dg denotes the
arc differential at q directed so as to keep A on the left, o(q) is a source
density at q to be determined and P is a vector variable defining points
within A. This potentials remains continuous as P approaches any point
p of L, and so on L we may write,

4@ = | 108 |p-a | o(@aq (19)
where §(P)— @(p) as P - p. It is a known result [11] that
#(®) = | 10" | p-a| o(@)dq + m(p) (20)

where log'|p-q| signifies the inward normal derivative of log|p-q| at p
keeping q fixed., Writing

vip) = | loglp-alu@da, ¢'(p) = | 1og'[p-alut@da + rup) (21)

where u(q) is a second source density at q to be determined, and sub-
stituting (19), (20), (21) into (14) and (15), we arrive at two coupled linear
integral equations for o, uin the clamped plate problem. With these known,
¢ and ¥, and hence also W, and therefore also w, can be generated through-
out A.

Derivatives of ¢ at any interior point P = x(P), y(P) may be generated
by the formulae

* This representation is discussed more fully in [1]
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¥.2 j log|P-q|o(q)dq = jlogxl‘P-qlo(q)dq (22)

etc,, where

log, 'P—q| - %1?_):3"21‘1)_, log, P-q| - -2 [X(P)I—x(q)?é[y(P)—y(q)]
P-q x P-q
1 2 [x(P)- 2
log, |P-q| = e lﬁi_;’i(qﬂ  ete.

However difficulties arise on L. owing to discontinuities exemplified by (20).
By contrast to the normal derivative, the tangential derivative of a simple
layer potential remain continuous [11] at L, a property symbolised by
writing

o)
2 {108 |p-a| 0@ = [ 108)p-a] ol@ea (23)

where log, |p-q| signifies the tangential derivative of log|p-ql| at p keeping
q fixed. Accordingly, since

_ 9 dn_ & dt

2 . +
ox on ° dx ot * dx’
it follows that

5o | 1oglp-a| ot@da = [[1og'|p-a| o(@da + moip)] G

+[ § 108,/p-a| ot@aq] g

dn
= f 108, p-a [ o(@dq + mo(p) G, (24)

and similarly

2 (10g|p-q| o(@)dq = | log,|p-a| o(q)dg + ro(p) & (25

3y g|p-q| o(q)dq gy| p-q| o(@dq + 70(p) 35 )
where

dn _ dn _

= cos(n, X} , qy - cos(n,y) etc.,

as exhibited in Fig, 1, It will be noted from (15), (16) and (17) that second
derivatives on L. are not required. Substituting (24), (25) as well as (19),
(20), (21) into (14) and (17) yields two coupled linear integral equations
for o, pu in the simply-supported plate problem for any domain. If (17) is
replaced by the simplified condition (16) for rectangular plates, this imme-
diately gives a linear integral equation for ¢ independently of u, thereby
determining ¢ independently of ¢/; with ¢ known on L, ¢ is then determined
at once on L from (14). This is the counterpart of the Marcus reduction
according to our formulation.

Successful techniques for the numerical solutions of boundary integral
equations have been developed by Maiti [6] and by Symm [12, 13], and
these suffice for all the formulations of the present paper. The rounding
of corners is fully described in [1] and exemplified in Fig., 2. Problems
involving the second derivatives of simple source potentials on L will be
treated in a subsequent paper.
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Fig.2, Quadrant of a square: successive subdivisions and corner roundings.

4. Numevical Results and Compavisons

For a rectangular clamped plate of dimensions a/b = 2.0, we round off
the corners and choose n (number of nodal points) = 24 initially as exhibited
in Fig. 3. The effective number of nodal points reduces from n to n/4
owing to symmetry. Numerical solutions were achieved by a digital com-
puter program for n = 24, 48, 96 so that numerical conditioning could be
examined, The problem was also solved for a/b = 1.5 taking n = 20, 40,
80 and for a/b = 1.0 taking n = 16, 32, 64. All tabulated results refer
to the final value of n in each case., Table 1 provides the central deflection,
and some Iimportant bending moments, as computed by us, and they are
seen to be in excellent agreement with the results quoted by Timoshenko
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Fig.3. Quadrant of a rectangle (a/b = 2): initial subdivision and corner rounding.

et al [3] which also appear in Table 1, These comparisons demonstrate

Table 1. Clamped rectangle: central deflection and some important bending
moments, computed from integral equation solution (first row) and
from solution quoted by Timoshenko et al (second row).

/ 0 0, M_(0,b
alb | w0,0) M(0.0) | Myla,0) | M (0.0 (0D
g
. 0.0202kb /D | 0.0016kb% | -0.2042kb2 | 0.0916xkb% | -0.2042kb
01 0.0202k0%/D | 0.0924kb -0.2052kb> | 0.0924kb2 | -0.2052Kb
2
. 0.0351kb%/D | 0.0811kb° | -0.2268kb> | 0.1471kb% | -0.3020kb
5 | o.0352kb4/D | 0.0812kb2 | -0.2280kb2 | 0.1473kb? | -0.3028kb
) 0.0a05kb3/D | 0.0631k02 | -0.2270kb2 | 0.1646k0% | -0.3312Kkb2
01 0.0a06kb?/D | o0.0632k0% | -0.2284kb 0.1648kb> | -0.3316kb

that the integral equation method works as well as any other for clamped
plate problems,

The simply-supported square plate has been treated utilising (10), with
rounded-off corners, taking n = 16, 32, 64, The variation of p-! along
an edge is exhibited in Fig. 4, it being noted that p, = h (interval length)

at any stage. Our numerical solution yields —g% at the midpoint of the cir-
1 9w

cular arc, and hence also g~ at that point, as provided in Table 2.

an
It will be seen that g—% decreases as p, decrease, thereby supporting the
conjecture [3] that g—%’ = 0 at a corner. It will also been that p,-! %N
2
increases as P, decreases, implying from M, = 0 that 8_¥ increases as
on

p, decreases, i. e, that the deflected surface has an appreciable curvature
in the n-direction at a corner point contrasting with its zero curvature at
other edge points, This supports the physically based view [3] that simply-
supported plates have a tendency to ride up at the corners, so requiring
reactions of opposite sign to those elsewhere along the edge in order to
maintain w = 0. Computations were also performed on the basis of w =
V2w = 0 everywhere on L, including the arcs, with results almost in-
distinguishable from the preceding, though somewhat closer to those quoted
by Timoshenko et al [3] relying on the same simplification (Table 3). We
may infer that ignoring the corner anomaly has no significant effect on
the solution of simply~supported plate problems.

The square plate with one pair of opposite edges clamped, and the other
pair simply-supported, has also been treated by our formulation. On the
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Fig.4. Variation of curvature along half side of square for successive subdivisions. The step function denoted
n =16, 32, 64 correspond respectively with (a), (b), (c) of Fig, 2.

Table 2. Simply-supported square: nu-
merical behaviour at the cor-
ner nodal point for successively
decreasing interval lengths.

) 1

h ;;—” nt Taﬁvi
0.2500 0.0095k/D 0.0381k/D
0.1250 0.0053k/D 0.0427Tk/D
0.0625 0.0028k/D 0.0452k/D

basis of p™! = 0 everywhere along the edges, we find results (Table 4)
indistinguishable from those previously quoted [3].
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Table 3. Simply -supported square: deflection and bending moments along lines of symmetry radiating
from the centre, computed from integral equation solution of biharmonic problem (first
row), from integral solution of reduced problem (second row), and from solution of reduced
problem tuoted by Timoshenko et al (third row). The Greek symbols denote standard nu-

merical factors,

x =0 0.2 0.4 0.9 0 0 0 0.2 0.4
y=20 0 0 0 0.2 0.4 0.5 0.2 0.
0.0042 | 0,0035 | 0,0014 0,00385 | 0.0014 0.0029 | 0,0005
w = ok/D | 0,0042 | 0,0034 1 0,0014 [ 0,0000) 0.06034 | 0,0014 [0.0000¢ 0.0028 | 0.0005
0,0041 - - - - - -
0,0491 0.0438 0,0220 0.0409 0,0170 0.0370 0,0146
M =Bk 0.0487 ] 0.0433 | 0,0216 | 0,0000| 0,0406 | 0,0170 - 0.0365 | 0.0114
= 0.0479 | 0.0424 § 0,0208 0.0400 | 0,0168 - -
0.0491 10,0409 § 0,0170 0.0438 | 0,0220 0.0370 } 0.0146
M = yk 0,0487 10,0406 | 0,0170 - 0,0433 | 0.0216 ]0.0000| 0.0365 | 0.0114
¥y 0.0479 | 0.0400 | 0,0168 0.0424 | 0,0209 - -
Table 4. Partly clamped, partly simply-supported,
square: central deflection and some impor-
tant bending moments, computed from in-
tegral equation solution (first row) and from
solution quoted by Timoshenko et al (second
I0W).
] 0,0 / /
w(0,0) M (0,0 hiyy(0,0) h]yy(o,a)
0.0019k/D 0.0244k 0.0333k -0.0699k
0.0018k/D 0.0244k 0.0333k ~0.0697k
REFERENCES

M. A, Jaswon, M,Maiti
and G.T.Symm,

M. A.Jaswon,

. S.Timoshenko and

S. Woinowsky -Krieger,

L.S.D. Morley,

H, Marcus,
M. Mairi,

J.L,Maulbetsch,

. L.§.D.Morley

M.L.Williams,

"Numerical Biharmonic Analysis and Some Applications”, Int.Jour. of Solids

and Structures, 3, 309, 1967.

"Integral Equation Methods in Potential Theory 1", Proc.Roy.Soc. A 275,
23, 1963.

Theory Of Plates And Shells, 2nd edition, McGraw Hill, 1959,

"Simple Series Solutions For The Bending Of A Clamped Rectangular Plate
Under Uniform Load", Quart, Jour, Mechs. and Appl.Maths., 16, 109, 1963.

Die Theorie Elastischer Gewebe, 2nd edition, Berlin, 1932,

Ph.D. Thesis, _London University, 1965.
"Thenmal Stresses In Plates”, Jour.Appl,Mech,, 2, 141, 1935,

“Some Variational Principles In Plate Bending Problems, Quart,Jour.Mechs,
and Appl.Maths., 14, 371, 1966.

"Stress Singularities Resulting From Various Boundary Conditions In Angular
Corners Of Plates Under Tension”, Jour.Appl.Meschs,, 18, 526, 1952,




. P.M.Quinlan,
. O.D.Kellog,

. G.T.Symm,

G.T.Symin,

An Integral Equation Formulation of Plate Bending Problems 93

"The A-Method For Rextangular Plates", Proc.Roy.Soc. A, 288, 371, 1965.

Foundations Of Potential Theory, Springer, 1929.

"Integral Equation Methods In Potential Theory II", Proc.Roy.Soc., A 275,
33, 1963.

Ph.D.Thesis, London University, 1964,

[Received June 28, 1967:



