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SUMMARY 

The mathematical theory of thin elastic plates loaded by transverse forces leads to biharmonic boundary 
value problems. These may be formulated in terms of singular integral equations, which can be solved 
nnmerically to a tolerable accuracy for any shape of boundary by digital computer programs. Particular 
attention is devoted to clamped and simply-supported rectangular plates. Our results indicate support for the 
generally accepted treatment of such plates and for the intuitive picture of deflection behaviour at a corner. 

1. In troduct ion  

It has been demonstrated in a recent paper [-i] that some biharmonie 
boundary-value problems related to two-dimensional elastostatios may be 
solved numerieally by an adaption of Jaswon's integral equation formulation 
[-2]. We demonstrate in the present paper that this adaption als0 works 
well for eertain biharmonie problems related to the theory of thin plates 
loaded by transverse forces. The relevant field quantity in plate theory 
is the transverse defleetion w, analogous mathematically to Airy's stress 
funetion ~, and seeond derivatives of w yield moment eomponents just as 
second derivatives of 7. yield stress components. An attraetive feature of 
plate theory is that w has an immediate physical significance, and of eourse 
it can be eomputed to a higher aecuraey than moment or stress components. 
However plate theory offers some special diffieulties which do not arise 
in elastostaties. First, it is necessary to compute moments at the bound- 
ary it they have not been prescribed thereon, and this requires the dif- 
ferentiation of simple layer potentials at a source point on the boundary. 
Secondly, in the ease of polygonal boundaries, complications appear at 
eorners owing to their infinite eurvatures. Finally, as regards free bound- 
aries, higher derivative conditions enter whieh are not well adapted either 
to theoretical or numerieal analysis. These difficullies make an independent 
treatment of plate problems necessary. 
Three distinet problems are considered in this paper: elamped rectangular 

plates of various dimensions subjeet to transverse loading; the simply- 
supported square plate subjeet to uniform transverse loading; the partly 
clamped, partly simply-supported square plate subjeet to uniform transverse 
loading. All our results are in excellent agreement with the approximate 
a n a l y t i c  s o l u t i o n s  q u o t e d  b y  T i m o s h e n k o  a n d  W o i n o w s k y - K r i e g e r  [ 3 ] .  O u r  
r e s u l t s  f o r  c l a m p e d  r e c t a n g u l a r  p l a t e s  a l s o  a g r e e  w e l l  w i t h  t h o s e  r e c e n t l y  
o b t a i n e d  b y  M o r l e y  [-4] o n  t h e  b a s i s  o f  v a r i a t i o n a l  p r i n c i p l e s .  

A s  r e g a r d s  s i m p l y - s u p p o r t e d  r e c t a n g u l a r  p l a t e s  s u b j e c t  t o  u n i f o r m  t r a n s -  
v e r s e  l o a d i n g ,  t h e  p r o b l e m  m a y  i n  e f f e c t  b e  r e d u c e d  f r o m  b i h a r m o n i e  t o  
h a r m o n i c  f u n c t i o n  t h e o r y  b y  o m i t t i n g  t h e  b o u n d a r y  t e r m  p-1 8 w  (p-I is the 
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c u r v a t u r e  and 0 _  d e n o t e s  n o r m a l  d e r i v a t i v e ) ,  an  e x t e n s i v e l y  e m p l o y e d  s t e p  On 
a p p a r e n t l y  f i r s t  po in t ed  out  in the l i t e r a t u r e  by M a r c u s  [ 5 ] .  T h i s  t e r m  is  
i ndeed  z e r o  a l o n g  a s t r a i g h t  l ine  s i n c e  o-1 = 0, but  cou ld  p o s s i b l y  b e c o m e  
f in i te  o r  e v e n  in f in i t e  a t  a c o r n e r  owing  to the b e h a v i o u r  of O -~ t h e r e .  

No s y s t e m a t i c  a n a l y t i c a l  o r  n u m e r i c a l  i n v e s t i g a t i o n  of 0 -1 aw ~-~ omission 

effects seems to be available. Our procedure here is to round off each 
corner by a circular arc of radius Po as described elsewhere [i], solve 

the complete biharmonie problem numerically retaining po -I 0_~w along the 
On 

arcs, and examine numerical behaviour as Po -~ 0. We find the results 
for a square plate to be almost indistinguishable from those obtained by 

3w . 
solving the reduced problem numerically. We also find that po -I ~nn m- 

0w 
creases,whilst-~-~n deereases, as po I --. 0, so implying (as will be explained 

later) support for Timoshenko's intuitive picture [3-] of deflection behaviour 
near a corner [6~. A similar, though simpler, reduction occurs on o- 

mitting p-1 8w ~-ff f r o m  the b o u n d a r y  c o n d i t i o n s  of a s i m p l y - s u p p o r t e d  p l a t e  

s u b j e c t  to a u n i f o r m  t h e r m a l  m o m e n t  [7 ] .  T h i s  p r o b l e m  h a s  b e e n  t r e a t e d  
on the s a m e  l i n e s  as  the p r e c e d i n g ,  y i e l d i n g  s i m i l a r  e o n e l u s i o n s .  F u r t h e r  
p r o b l e m s  now u n d e r  i n v e s t i g a t i o n  a r e  the p a r t l y  c l a m p e d ,  p a r t l y  f r e e  r e c -  
t ang l e ,  and  the c l a m p e d  e l l i p s e  s u b j e c t  to a c o n c e n t r a t e d  t r a n s v e r s e  load .  

T h r e e  m a i n  c o n c l u s i o n s  e m e r g e  f r o m  th is  p a p e r .  F i r s t ,  the i n t e g r a l  
e q u a t i o n  m e t h o d  r a p i d l y  p r o v i d e s  a r e l i a b l e  o v e r a l l  p i c t u r e  of the d e f l e c t i o n  
and m o m e n t  d i s t r i b u t i o n ,  though f i n e r  d e t a i l s  a r e  p r o b a b l y  b e s t  s u p p l i e d  
by  m o r e  s o p h i s t i c a t e d  a n a l y t i c a l  t e c h n i q u e s  s u c h  a s  the p o l a r  c o o r d i n a t e  
t r a n s f o r m a t i o n s  o f  M o r l e y  [-8~ o r  of W i l l i a m s  [ 9 ] ,  o r  the ) t - m e t h o d  of 
Qu in l an  ~10~,  Secondly~ i t s  n u m e r i c a l  r e s u l t s  l end  s u p p o r t  to the w i d e l y  

a c c e p t e d  o m i s s i o n  of 0"1 0w ~-~ f o r  r e e t a n g u l a r  p l a t e s ,  so  e n a b l i n g  the a n a -  

l y t i c a l  t r e a t m e n t s  to be  c o r r e s p o n d i n g l y  s i m p l i f i e d .  T h i r d l y ,  i t  a p p e a r s  
tha t  the c o r n e r s  of a s i m p l y - s u p p o r t e d  s q u a r e  p l a t e  b e h a v e  t h e o r e t i c a l l y  
a s  e x p e c t e d  on i n tu i t i ve  p h y s i c a l  g r o u n d s .  

T h e  r e s t  of the p a p e r  d i v i d e s  in to  t h r e e  m a i n  s e c t i o n s :  thin p l a t e  t h e o r y ,  
i n t e g r a l  e q u a t i o n  f o r m u l a t i o n ,  n u m e r i c a l  r e s u l t s  and  c o m p a r i s o n s .  

2. Thin Plate Theory 

The transverse deflection of a thin plate under a uniform load k per 
unit area satisfies the equation 

2 2 V (V w )  --~ V4w = k / D ,  (1) 

w h e r e  D is  the f l e x u r a l  r i g i d i t y .  With  w known,  the m o m e n t  c o m p o n e n t s  
at any point x, y are determined from 

FO2W + ~ 02W'~ Myy = _ D F 0 2 w  

: D Lax aY J' 

Mxy = - My x = D (1-~)  02w 
a x a y  ' 

+ p 02w~ 

Ox2.J ' 

(2) 

using the notations and conventions of Timoshenko [-3]. These formulae 
can immediately be adapted to the boundary, L, by identifying x - n, y m t, 
where n, t denote the (inward) normal and tangential boundary variables 
as indieated in Fig. i. Accordingly we write 
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Fig. 1. Orientation of tangent and normal at a point p of the boundary curve L enclosing the domain Q. 

Mnn = - D F a2w + v a2wl 

J ' 
= _ DFa w + 1 Mtt Lot 2 an 2 

Mu~ = - D ( 1 - v )  a2w 
anat " (3) 

noting that+M does not enter into any boundary conditions since it refers 
entirely to ~,~t material just inside L. Although the t-direction lies at right 
angles to the n-direction, it proves more convenient to work with the arc 
variable s rather than with t, necessitating the derivative transformations 

aw aw a2w a2w 1 aw 
s 

as at as 2 at 2 p an 

a2w _ a2w a2w = a2w 1 aw 
3na~  a n a t '  a s a n  ana----'s p as  (4) 

For a straight line p-i = 0 and s has then exactly the same significance 
as t. Substituting from (4) into (3) yields the general boundary formulae 

Fa2W u ( a 2 w  1 aw) l  

Mnt = - D(1-v)  a2w - D(1-v) F a2w 1 a_i] 
ands Lasan + ~ " 

(5) 

The conditions w = 0 holds for both clamped and simply supported bound- 
aries. This implies 

aw a2w 
- 0 o n  L ,  (6) 

as as 2 
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s o  t h a t  (5) b e c o m e s  

Or  0w] 
L. 8n2 p ~ : - D + P 

Mnt : -  D ( 1 - v ) 8 2 w  = -  D ( 1 - u )  8 ( 8 w )  
8 s S n  -~s ~ ' 

(7) 

w h e r e  

V2w = a2___~w + ~2w _ a2w + a2w i aw 

~n 2 ~t2 8n 2 8s 2 - p 8--n 

Ow 
On a clamped boundary ~ = 0, so that (7) becomes 

= D V 2 w ,  Mnt = - D ( 1 - u )  = 0. Mnn (8) 

On a s i m p l y - s u p p o r t e d  b o u n d a r y  Man = 0, b u t  no  s i m p l i f i c a t i o n s  a p p e a r  in  
(7) .  T o  s u m m a r i z e ,  t h e  p r e s c r i b e d  c o n d i t i o n s  on  a c l a m p e d  b o u n d a r y  a r e  

8w 
w - a n  - 0, (9) 

w i t h  Mnn to  b e  d e t e r m i n e d  f r o m  (8);  t h e  p r e s c r i b e d  c o n d i t i o n s  on  a s i m p l y -  
s u p p o r t e d  b o u n d a r y  a r e  

w = V2w + 1 - u  8w _ P a--n-- O, (10) 

w i t h  Mnt to  b e  d e t e r m i n e d  b y  (7).  2w = 
C o n d i t i o n  (10) s i m p l i f i e s  to  w = V 0 on  o m i t t i n g  p -1 aw - ~ -  a l o n g  a 

p o l y g o n a l  b o u n d a r y .  A c c o r d i n g l y ,  w r i t i n g  V 2 w - - - - - M ,  w e  s e e  f r o m  (1) t h a t  
V 2 M  = k / D  t h r o u g h o u t  t he  p l a t e  d o m a i n  A c o u p l e d  w i t h  M = 0 on  L .  T h i s  
i s  a c l a s s i c a l  D i r i c h l e t  p r o b l e m  f o r  M. W i t h  M k n o w n  in  A ,  w e  m a y  d e -  
t e r m i n e  w b y  s o l v i n g  the  s e c o n d  D i r i c h l e t  p r o b l e m :  V 2 w  = M i n  A s u b j e c t  
to  w = 0 on  L .  F o r  t he  s i m p l y - s u p p o r t e d  ~ o l y g o n a l  p l a t e  s u b j e c t  to  a u n i -  
f o r m  t h e r m a l  m o m e n t ,  w s a t i s f i e s  V2(V w) = 0 i n  A u n d e r  t he  b o u n d a r y  
c o n d i t i o n s  

w = 0, V 2 w  = K (11)  

w h e r e  K i s  a c o n s t a n t .  S i n c e  V 2 w  i s  now a h a r m o n i c  f u n c t i o n  in  A ,  a n d  
s i n c e  V 2 w  = K on L ,  i t  f o l l o w s  t h a t  V 2 w  = K t h r o u g h o u t  A. C o u p l i n g  t h i s  
e q u a t i o n  w i t h  w = 0 on L d e f i n e s  a D i r i c h l e t  p r o b l e m  f o r  w.  E x a c t  s o l u -  
t i o n s  of  t h e s e  r e l a t i v e l y  s i m p l e  D i r i c h l e t  p r o b l e m s  do  n o t  s e e m  to  b e  a -  
v a i l a b l e  for rectangular domains, but reliable approximate solutions can 
be readily obtained by an integral equation method [12]. 

3. Integral Equation Formulation 

Equation (i) admits the particular integral 

k 
WI = 48D (x4 + y4), 

and its general solution can hence be written 

W = W + W 1 

w h e r e  W s a t i s f i e s  V 4 W  = 0. 

(12) 

(13) 
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Throughout any compact domain A we may adopt the representation* 

W = r 2 r  + ~; V 2 r  = V 2 *  = 0 (14) 

where r 2 = x 2 + y2, or equivalent representations such as x~ + @ or 
y~ + @. Since W is prescribed on L, i.e. W = -W 1 so making w = 0 in 
accordance with (9) and (I0), equation (14) may be regarded as a linear 

aw v~vv, f u n c t i o n a l  r e l a t i o n  c o u p l i n g  ~, @ on L. A l so ,  s i nce  W'(---~--~n ), o r  o r  

V 2 W  + 1 -u  W' ,  is p r e s e r i b e d  on L,  t h e r e  e x i s t s  a s e c o n d  l i n e a r  f u n e t i o n a l  
relation p 

W' = (r2r  ' + r = 2 r r ' r  + r2r  ' + @' 15)  

o r  

v 2 w  = 4 (x ar a4 "~-~- + y - @ +  r 16) 

or 

V2W + 1-up W' = 4 (x -~ -x+  Y 8 y 8 r  8r + r + 1-up ( 2 r r ' r  + r2 r  ' + @;) 17) 

c o u p l i n g  the d e r i v a t i v e s  of r @ on L.  R e l a t i o n  (14), t o g e t h e r  wi th  (15), 
(16) o r  (17), in p r i n c i p l e  s u f f i c e s  to d e t e r m i n e  r @ on L,  w h e n c e  they  
can be continued into A. so continuing W into A, and thereby continuing 
w into A. A practicable method of carrying out this program is to identify 
4, @ as potentials generated by continuous simple source distributions on 
L, with densities to be determined. Thus we write 

f log  ] P - q  I ~(q)dq (18) r 

where q is a vector variable defining source points on L, dq denotes the 
arc differential at q directed so as to keep A on the left, a(q) is a source 
density at q to be determined and P is a vector variable defining points 
within A. This potentials remains continuous as P approaches any point 
p of L, and so on L we may write. 

[ log [ p - q  [ (~(q)dq (19) ~(P) 

where r ~(p) as P -+ p. It is a known result [11] that 

~'(p) : ~ log I p-ql ~(q)dq + ~(p) (20) 

where log'Ip-ql signifies the inward normal derivative of log[p-ql at p 
keeping q fixed. Writing 

f l ~  @'(P) = I l~ + rr/.t(p) (21) r 

where #(q) is a second source density at q to be determined, and sub- 
stituting (19), (20), (21) into (14) and (15), we arrive at two coupled linear 
integral equations for q, ~in the clamped plate problem. With these known, 

and @, and hence also W, and therefore also w, can be generated through- 
out A. 

Derivatives of r at any interior point P =-x(P), y(P) may be generated 
by the formulae 

* This representation is discussed more fully in [I]. 
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de_ a j loglH_qlo(q)dq = f logxlH_qlolq)dq ~x ax 

etc., where 

x(P) -x(q) 
l~ [ P - q [  - p_q[2 lOgxy [ P - q l  = 

-2 [x(P)-x(q)] Ey(P)-y(q)] 
IH-ql 4 

(22) 

l o g x x l p q l  = jp ql2 2[x(H) x(q)] 2 IP -q l  4 , etc. 

However d i f f icu l t ies ar ise on L owing to discont inui t ies exempli f ied by(20). 
By eontrast to the normal der ivat ive,  the tangential der ivat ive of a simple 
layer  potential remain continuous [11] at L,  a proper ty  symbol ised by 
writing 

f log IP-ql ~(q)dq = J log, Ip-q I •(q)dq (23) at 

w h e r e  logtlp-ql s i g n i f i e s  the t angen t i a l  d e r i v a t i v e  of log  [P-ql at  p k e e p i n g  
q f ixed .  A c c o r d i n g l y ,  s i nce  

_88_ 8_ dn 8 dt 
8 x -  8n " d--x + 8-t " d-x '  

it follows that 

a loglp-ql cr(q)dq = log '  I p - q l  ~r(q)dq + 7to(p) d x  8x 

+EI o(n, q] st 

f an = l~ P - q  [ c~(q)dq + ~r~(p) - ~  , 

and s i m i l a r l y  

! l o g l p - q l  ~(q)dq = logy I p - q  ~(q)dq + ~re(p) dy'  ay  

w h e r e  

(24) 

(25) 

dn dn 
dx = c o s ( n , x )  , d )  = c o s ( n , y )  e t c . ,  

as exhibited in Fig. i. It will be noted from (15), (16) and (17) that second 
derivatives on L are not required. Substituting (24), (25) as well as (19), 
(20), (21) into (14) and (17) yields two coupled linear integral equations 
for % ~ in the simply-supported plate problem for any domain. If (17) is 
replaced by the simplified condition (16) for rectangular plates, this imme- 
diately gives a linear integral equation for ~ independently of ~, thereby 
determining r independently of~; with r known on L, ~ is then determined 
at once on L from (14). This is the eounterpart of the Marcus reduction 
according to our formulation. 

Successful techniques for the numerical solutions of boundary integral 
equations have been developed by Maiti [-6] and by Symm [12, 13], and 
these suffice for all the formulations of the present paper. The rounding 
of corners is fully described in [-i] and exemplified in Fig. 2. Problems 
involving the second derivatives of simple source potentials on L will be 
treated in a subsequent paper. 
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Fig. 2. Quadrant  of a square:  success ive  subdivisions and corner  rouudings.  

4. Numerical Results  and Comparisons 

For a rectangular clamped plate of dimensions a/b = 2.0, we round off 
the corners and choose n (number of nodal points) = 24 initially as exhibited 
in Fig. 3. The effective number of nodal points reduees from n to n/4 
owing to symmetry. Numerical solutions were achieved by a digital com- 
puter program for n = 24, 48, 96 so that numerical conditioning could be 
examined. The problem was also solved for a/b = i. 5 taking n = 20, 4@, 
80 and for a/b = 1.0 taking n = 16, 32, 64. All tabulated results refer 
to the final value of n in each ease. Table 1 provides the central deflection, 
and some important bending moments, as eornputed by us, and they are 
seen to be in excellent agreement with the results quoted by Timoshenko 
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6 5 4 
: I ; I 

Fig. 3. Quadrant of a rectangle (a/b = 2): initial subdivision and corner rounding. 

e t  a l  [ 3 ]  w h i c h  a l s o  a p p e a r  i n  T a b l e  1.  T h e s e  c o m p a r i s o n s  d e m o n s t r a t e  

Table 1. Clamped rectangle: central deflection and some important bending 
moments, computed from integral equation solution (first row) and 
from solution quoted by Timoshenko et al (second row). 

a/b 

1.0 

1.5 

2.0 

w(0,0) Mxx (0,0) Mxx (a , . 0 )  Myy(0,0) Myy( 0, b) 

0.0202kb4/D 0.0916kb 2 -0.2042kb 2 O.0916kb 2 -0.2042kb 2 
0.0202kb4/D 0.0924kb 2 -0.2052kb 2 0.0924kb 2 ~0.2052kb 2 

0.0351kb4/D 0.0811kb 2 -0.2268kb 2 0.1471kb 2 -0.3020kb 2 
0.0352kb4/D 0.0812kb 2 -0.2280kb 2 0.1473kb 2 -0.3028kb 2 

0.0405kb4/D 

0.0406kb4/D 

0.0631kb 2 
0.0632kb 2 

-0.2270kb 2 
-0.2284kb 2 

0.1646kb 2 
0.1648kb 2 

-0. 3312kb 2 
-0.3316kb 2 

that the integral equation method works as well as any other for clamped 
plate problems. 

The simply-supported square plate has been treated utilising (i0), with 
rounded-off corners, taking n = 16, 32, 64. The variation of p-1 along 
an edge is exhibited in Fig. 4, it being noted that Po = h (interval length) 

Our numerical solution yields L~_ at the midpoint of the cir- at any stage. 

8w at that point, as provided in Table 2. cular arc, and hence also po "I 0--~ 
~w It will be seen that ~-~ decreases as Po decrease, thereby supporting the 

8w 
conjecture [3] that 8w _ 0 at a corner. It will also been that po -I 

8n 

increases as Po decreases, implying from Mnn = 0 that ~ increases as 
8n 

Po decreases, i.e. that the deflected surface has an appreciable curvature 
in the n-direction at a corner point contrasting with its zero curvature at 
other edge points. This supports the physically based view [3] that simply- 
supported plates have a tendency to ride up at the corners, so requiring 
reactions of opposite sign to those elsewhere along the edge in order to 
maintain w = 0. Computations were also performed on the basis of w = 
V2w = 0 everywhere on L, including the arcs, with results almost in- 
distinguishable from the preceding, though somewhat closer to those quoted 
by Timoshenko et al [3] relying on the same simplification (Table 3). We 
may infer that ignoring the corner anomaly has no significant effect on 
the solution of simply-supported plate problems. 

The square plate with one pair of opposite edges clamped, and the other 
pair simply-supported, has also been treated by our formulation. On the 
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n=32 

p-i S n= 16 

v v y 

./8 ./4 ./2 
Fig.4.  Variation of curvature along half side of square for successive subdivisions. The step function denoted 

n = 16, 32, 64 correspond respectively with (a),  (b), (c) of Fig. 2. 

Table 2. Simply-supported square: nu-  
mer ica l  behaviour at the cor-  
ner nodal point for successively 
decreasing interval lengths. 

h ~w h_ 1 ~w 
~n ~n 

0.2500 0.009~k/D 0.0381k/D 

0.1250 0.0053k/D 0.0427k/D 

0.0625 0.0028k/D 0.0452k/D 

basis of p-I = 0 everywhere along the edges, we find results (Table 4) 
indistinguishable from those previously quoted [3]. 
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Table 3. Simply-supported square: deflection and bending moments along lines of symmetry radiating 
from the centre, computed from integral equation solution of biharmonic problem (first 
row), from integral solution of reduced problem (second row), and from solution of reduced 
problem quoted by Timoshenko et al (third row). The Greek symbols denote standard nu- 
merical factors. 

W = cvk/D 

M = ~k 
XX 

Myy= 7 k 

x = 0 0.2 0.4 0.5 
y = 0  0 0 0 

0.0042 0.0035 0.0014 
0.0042 0.0034 0.0014 
0.004i - 

0.0491 0.0438 0.0220 
0.0487 0.0433 0.0216 
0.0479 0.0424 0.0209 

0.0491 0.0409 0.0170 
0.0487 0.0406 0.01q0 
0.0429 0.0400 0.0168 

0.0000 

0.0000 

0 0 0 

0.2 0.4 0.5 

0.0035 0.0014 
0.0034 0.0014 0.0000 

0.0409 0.0170 
0.0406 0.0170 
0.0400 0.0168 

t 

0.0438 0.0220 
0.0433 0.0216 
0.0424 0.0209 

0.0000 

0.2 0.4 
0.2 0.4 

0.0029 0.0005 

0.0028 0.0005 

0.0370 0.0146 
0.0365 0.0114 

0.0310 0.0146 
0.0365 0.0114 

Table 4. Partly clamped, partly simply-supported, 
square: central deflection an0 some impor- 
tant bending moments, computed from in- 
tegral equation solution (first row) and from 
solution quoted by Timoshenko et al (second 
rOW) .  

w(O, 0) Mxx(0, 0) Myy(0,0) Myy(O,a) 

0.00191</D 0.0244k 0.0333k 

0. 0019k/D 0 .02441<  0.0333k 

-0.0699k 

-0.0692k 
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